Semantic Textual Similarity

نویسنده

  • Madhura Parikh
چکیده

Through this project, we will explore Semantic Textual Similarity a shared task in Sem Eval 2012. The problem involves comparing a pair of sentences for semantic equivalence, reporting the equivalence on a scale of 0 5 with 0 meaning no equivalence and 5 meaning semantically equivalent. This task is more challenging than determining if the two sentences are paraphrases (a simple yes/no answer), and thus is likely to have much wider applications for a host of NLP tasks like Machine Translation, Question-Answering and Information Retrieval. We build upon the winning 2012 Sem Eval entries, and in addition use a tree-kernel based Support Vector Regression that compares the top-k syntactic parses of the the two sentences as an added similarity measure. Our results seem promising, beating the 2012 winning entry overall, and even more importantly doing significantly better on the surprise test data. We also discuss future extensions that are likely to strengthen our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions on Semantic Similarity and Its Applications to Data Privacy

Semantic similarity aims at quantifying the resemblance between the meaning of textual terms. Thus, it represents the corner stone of textual understanding. Given the increasing availability and importance of textual sources within the current context of Information Societies, a lot of attention has been put in recent years in the development of mechanisms to automatically measure semantic simi...

متن کامل

ExB Themis: Extensive Feature Extraction from Word Alignments for Semantic Textual Similarity

We present ExB Themis – a word alignmentbased semantic textual similarity system developed for SemEval-2015 Task 2: Semantic Textual Similarity. It combines both string and semantic similarity measures as well as alignment features using Support Vector Regression. It occupies the first three places on Spanish data and additionally places second on English data. ExB Themis proved to be the best ...

متن کامل

FCICU at SemEval-2017 Task 1: Sense-Based Language Independent Semantic Textual Similarity Approach

This paper describes FCICU team systems that participated in SemEval-2017 Semantic Textual Similarity task (Task1) for monolingual and cross-lingual sentence pairs. A sense-based language independent textual similarity approach is presented, in which a proposed alignment similarity method coupled with new usage of a semantic network (BabelNet) is used. Additionally, a previously proposed integr...

متن کامل

SAGAN: An approach to Semantic Textual Similarity based on Textual Entailment

In this paper we report the results obtained in the Semantic Textual Similarity (STS) task, with a system primarily developed for textual entailment. Our results are quite promising, getting a run ranked 39 in the official results with overall Pearson, and ranking 29 with the Mean metric.

متن کامل

CFILT-CORE: Semantic Textual Similarity using Universal Networking Language

This paper describes the system that was submitted in the *SEM 2013 Semantic Textual Similarity shared task. The task aims to find the similarity score between a pair of sentences. We describe a Universal Networking Language (UNL) based semantic extraction system for measuring the semantic similarity. Our approach combines syntactic and word level similarity measures along with the UNL based se...

متن کامل

CFILT-CORE: Finding Semantic Textual Similarity using UNL

Semantic Textual Similarity is the task of finding the degree of similarity between a pair of sentences through semantics extraction. This is motivated by the fact that syntactically diverse sentences often convey the same meaning. This paper describes the approach that was used in the *SEM Shared Task 2013. The approach combines semantic, syntactic and lexical similarity measures for finding s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015